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Fig. 4. (a) PHENIX transverse energy density per participant dE/dn/N . for Au+Au

at . syv=130 GeV as a function of N, ., the number of participants, compared to the
data of WA9S8 for Pb+Pb collisions at . sxv=17.2 GeV. The solid line is the N, “ best
fit and the dashed lines represent the effect of the +10 N, -dependent systematic errors

for dE;/dn and N, These are the Type B correlated systematic errors, all poimts
move together by the same firactiom of the systematic error at each poimt.
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Constituent quarks are Gell-Mann’s For hard-scattering, p>2
quarks from Phys. Lett. 8 (1964)214, | |GeV/c, Q*=2p>>8 GeV?,

proton=uud. These are relevant for the partons (~massless
static properties and soft physics, low | | current quarks, gluons and
Q%<2 GeV?; resolution> 0.14fm sea quarks) become visible

1.6fm

Resolution ~0.5fm Resolution ~0.1fm Resolution <0.07fm
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10° g PHENIX2014 E, distributions
NQP fit—pp €ygp=0.659 from PRC89 (2014) 044905

T 10?
> 5
] 1) Generate 3 constituent quarks around
g nucleon position, distributed according to
5 1074 proton charge distribution for pp, dA, AA
2) Deconvolute p-p E distribution to the
106 v o0y sum of 2—6 quark participant (QP) E;
0 20 40 60 80 o o o - o o
E; (GeV) distributions taken as I" distributions
3) Calculate dAu and AuAu E; distributions as sum of QP E distributions
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PHENIX2014 [6], the spatial positions of the the three
quarks were generated around the position of each nu-
cleon in the Glauber monte carlo calculations for p + p,
d+Au and Au+Au collisions using the proton charge dis-

tribution corresponding to the Fourier transform of the
form factor of the proton [24]:

d°P/dr = pP™R (1) = pP™*" x exp(—ar), (4)

where a = V12/r,, = 4.27 fm~! and r,, = 0.81 fm

is the r.m.s radius of the proton weighted according to
charge [2]

Pogg = / r? X 4mr? pProeR (1) dr : (5)
0

s, e - ,
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The corresponding proton form factor is the Hofstadter Note that dipole fit agrees

dipole fit [25] now known as the standard dipole [26]: with Gg,G,, data to within a
few % for Q?< 1 GeV?. The

1 . s .
Ge(Q?) = Gu(Q?)/p= a2 5 (6) famous’ radius anomaly is
(1+ ;o2 ) he upslope for Q2< 0.1 in (b
0.71GeV?) the upslope for Q°< 0.1 in (b)
Mainz, Bernauer etal PHYSICAL REVIEW C 90, 015206 (2014 11 |
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*The radial distribution about the c.m. of the 3 generated quarks is not correct.
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PHYSICAL REVIEW C 93, 054910 (2016)

Tests of constituent-quark generation methods which maintain both the nucleon center of mass
and the desired radial distribution in Monte Carlo Glauber models

J. T. Mitchell, D. V. Perepelitsa, and M. J. Tannenbaum
Brookhaven National Laboratory, Upton, New York 11973, USA

P. W. Stankus
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
(Received 29 March 2016; published 23 May 2016)

Several methods of generating three constituent quarks in a nucleon are evaluated which explicitly maintain
the nucleon’s center of mass and desired radial distribution and can be used within Monte Carlo Glauber
frameworks. The geometric models provided by each method are used to generate distributions over the number
of constituent quark participants (Ngp) in p + p, d + Au, and Au + Au collisions. The results are compared with
each other and to a previous result of N, calculations, without this explicit constraint, used in measurements of
VSyy =200 GeV p + p,d + Au, and Au + Au collisions at the BNL Relativistic Heavy Ion Collider.

DOI: 10.1103/PhysRevC.93.054910
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f(r)y =r?p(r) = re”*%"(1.21466 — 1.888r + 2.03r?)

(14 1.0/r —0.03/r%)(1 + 0.157)
where r 1s the radial position ot the quark in tm.

*the three constituent-quark positions are drawn independently from the
auxiliary function f(r) above. Then the center of mass of the generated
three-quark system 1s re-centered to the original nucleon position.
This function was derived through an iterative, empirical approach. For
a given test function fA{test}(r), the resulting radial distribution
o™Mtest}(r) was compared to the desired distribution oA {proton }(r) in
Eq. 4. The ratio o”{test}(r) / oA{proton}(r) was parameterized with a
polynomial function of r or //r, and the test function was updated by
multiplying it with this parametrized functional form. Then, the
procedure was repeated with the updated test function used to generate
an updated o {\rm test}(r) until the ratio o/ {test}(r) / o*{proton}(r)
was sufficiently close to unity over a wide range of of r values.
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2.4 — ——r
® UA5 p+p,+/s=19.6 GeV

r® UAD, p+p, /s =200 GeV
e ALICE, p+ p, /s = 2760 GeV

|+ PHENIX, d + Au, /syy = 200 GeV
-5 PHENIX, 3He + Au, \/sny = 200 GeV
x PHENIX, Cu + Au, /syy = 200 GeV

1.8 o PHENIX, Au + Au, \/syy = 19.6 GeV

| © PHENIX, Au + Au, \/syy = 200 GeV
* PHENIX, U + U, \/sny = 193 GeV

o ALICE, Pb + Pb, \/sny = 2760 GeV

2.1

—_
(&)

ﬁ

| | Bozek, Broniowski, Rybczynski

- | PRC94(2016)014902 do a constituent
| | quark participant calculation which

| [ they call Qy, (wounded quark) and
find that it works for ALICE Pb+Pb

} SRS L1 | Vsn=2.76 TeV “but we note in Fig. 1
2| that at Vs, =200 GeV the
corresponding p + p point is higher by
O ¢ about 30% from the band of other
06 | e %ﬁﬁ@%@@ reactions”’(only from the lowest AuAu
. point)
03 T H3EFEPHDD
0.0 —— et
1 10 10°
(Nw)
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2.4

S s B Gy 11 Only from the lowest AuAu point
21 1 eI e G -| Of course I noted that they only used
 PHENIX Ei*g‘}ﬁ@_z%%ogievv || our tabulated statistical errors but left
18| pHENTX e e out our Type B correlated systematics
s - iiIIECI\]gXPg:PUI;\/@ 1 GV ] sh(?wn on our plots where all the data
S I L 5 ¢ ¢ *" || points can be moved up to the top of
T2 +| their syserror bars with the cost of 1 0,
~ /| so that the ratio of the p+p to lowest
Tosh R AuAu point is 1.19+0.17 statistical, or
06 | Cina IR 1332022 if we simply add the sys and
. || stat in quadrature. 1.e. 33+22%=30%
03 - soooneet | But this difference 1s not significant.
0.0 b
1 10 10°
(Nw)
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qp)[y=0]

N
T T T

@® 200 GeV Au+Au
@ 200 GeV p+p

We actually didn’t calculate the p+p

- ¢ 39Gev Aushu value in PRC93 (2016) 024901, but did
S A 195 GeV Ausu show the systematic errors on the plot.
3:5 M 77GevAuAu So here they are along with the p+p
g YL %* () _@;_‘jﬁ.‘ K3 %, calculation from PRC93 (2016) 054910
T using the same UAS pbar+p dN_/dn
I =2.23+0.08 atvs=200 GeV with a
I u‘ﬁi? §&§_3 p+p/Au+Au ratio of 1.19+0.19+£0.16 sys
ﬁé‘;‘ A ;;; i.e: agreement to = 1 o for all the data
T gl points at 200 GeV Au+Au.
j As far as I can tell BB&R use r, =0.94
- 1 PHENIX | 1 fm for the proton rms radius in Eq 4 and
o w o fa gaussian wounding profile for a g+q
* | collision--Not the standard Glauber.
rz_'%ggﬁcoef oo APS-April 2017 P%IX M. J. Tannenbaum 15



The Constituent Quark Participant Model (N)
works at mid-rapidity for A+B collisions in the range

(~20 GeV) 39 GeV< Vs < 5.02 TeV.

Experiments generally all use the same Glauber
M.C. but the BB&R’s M.C. 1s different for g+q

scattering leading to somewhat different results.
Attention must be paid to systematic errors.

How can the event-by-event proton radius
variations and quark-quark correlations used in
Constituent Quark Glauber models be measured?
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Table 1: Ny, in p+p

paper /S, aibn,fl T, ailgel (mb)  (Nyp)
p+p (GeV) (mb) (fm) (GeV)

PX2014 Phys. Rev. C89, 044905 (2014) 200 42.0 0.81 9.36 2.99
MPTS Phys. Rev. C93, 054910 (2016) 200 42.3  0.81 8.17 2.78
Loizides Phys. Rev. C94, 024914 (2016) 200 42.  0.81 8.1 2.8
BB&R Phys. Rev. C94, 014902 (2016) 200 41.3 0.94 7.0 2.60
reaction dn/deta err Sys Qw err
p+p Bozek 2.29 0.08 2.6
p+pMITBozek 2.23 0.08 2.6
p+p MPTS 2.23 0.08 2.78
cent 55-60 QW err
AuAu Bozek 52.2 6.5 4.88 80.65
AUuAUPX 52.2 6.5 4.88 77.5 6.8
dnch/QW err
p+p Bozek 0.881 0.031
p+pMITBozek 0.858 0.031
p+p MPTS 0.802 0.029
dnch/QW stat sys
AuAu Bozek 0.647 0.081 0.061
AuAuPX 0.674 0.103 0.086
stat Sys stat+sys shift sys stat
pp/Au Bozek 1.361 0.176 0.136 0.222 1.225 0.176
ppmjtB/AuB 1.325 0.172 0.133 0.217 1.192 0.172
pp/AuAu PX 1.191 0.186 0.159 0.245 1.032 0.186
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*The nucleus is transparent, incident protons pass through, make many successive
collisions and come out the other side

* Uncertainty principle and time dilation prevent cascading of produced particles in
relativistic collisions y h/m_c > 10fm even at AGS energies: particle production takes
place outside the Nucleus in a p+A reaction.

With 2 additional assumptions:
* An excited nucleon interacts with the same cross section as an unexcited nucleon.

» Successive collisions of the excited nucleon do not affect the excited state or its
eventual fragmentation products

The conclusion is that the fundamental element for particle production in nuclear
collisions is the excited nucleon and that the multiplicity is proportional to the
number of excited nucleons =Wounded Nucleon Model (Npart)

Offi f
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Extreme-Independent models: separate nuclear geometry and
fundamental elements of particle production.

* Nuclear Geometry represented by relative probability w, per B+A
interaction for a given number n of fundamental elements.

e [ will discuss models with 3 different fundamental elements:
v Wounded Nucleon Model (WNM) - number of participants N part

v~ Quark Part. Model (NQP), -number of constituent-quark participants N qp

v/ Additive Quark Model (AQM), color-strings between quark participants in
projectile & target: constraint: one string per qp -2 projectile quark participants.

* AQM & NQP cannot be distinguished for symmetric collisions, since

projectile and target have the same number of struck quarks. Need
asymmetric collisions, e.g, d+Au,

Offi f
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* The dynamics of the fundamental elementary process are taken
from the data: e.g. the measured E distribution for a p-p collision
represents: 2 participants (WNM);

; or projectile quark
participants (AQM).

*The above bullet 1s why I like these models: a Glauber calculation
and a p-p measurement provide a prediction for A+A

' Office of
.C Sc:encoe BROOKHRUEN APS-April 2017 P )K—ENIX M. J. Tannenbaum 21



I even used

CTL1IULD. 11aChAd gelieldaileu Uy Lie pz’ugraul were
traced through the detection apparatus, and the
simulated events were then put through the same
reconstruction program as were the real events.
The characteristics of Monte-Carlo-gener-
ated events and real events were then compared
in detail in order to establish the validity of
the method. For example, it was verified that
the simulated and real events gave the same
distributions in the coplanarity and copunctu-
ality variables. Most definitive, however, was

50F  Monte Carlo Datg

(Normalized to real data)

3
]
g
© a0} .
4
g al _Data
a detector &, ™ _
simulation § (g, e
2 I7 | (Real data uncorrected.)
1
1or TLTH T
o =l _rr-:j"'\.f" Hﬁ;@iﬁﬁ'}_‘ -
-32 -24-16-08 0 .08 .I6 .24 .32 40 48
- R
Pu

FIG. 2. Frequency distributions of real and simu-
lated (Monte-Carlo) scattering events, versus (P,

-P,,)/P,,. The shift of baseline for the real events is
the result of subtracting the accidental coincidences
(see text), which have a flat distribution. The Monte-
Carlo distribution has been normalized to have the
same area as the real distribution after correction.

u+p elastic scattering

A T T T T T ]
- ® REFERENCE 2 —
= A X THIS EXPERIMENT —i
- €-p SCATTERING AT 2.7 Bev —|
L INCIDENT ENERGY COMPUTED  _]
WITH FORM FACTORS:
] 2

M,
('“Hl /las)

2
“CM7Bev /¢
@

do
dq

FTTTT

I
|

1032 ] ] 1 ! l 1
8 12 16 20 24 28 32 36

qz (INF?)

FIG. 3. Comparison of muon cross section (do/dgq)
with the Rosenbluth prediction computed with a phenom-
enological fit to proton form factors. The two results
at qzz 20 F~? represent the overlap of two separate
runs, medium-¢* and high-¢?, differing in the thick-
ness of absorber in front of the range chamber (Fig. 1).
The expressnons for Gp and GM were chosen to fit
low-¢? e-p scattering data [L. N. Hand, D. G. Miller,
and Richard Wilson, Rev. Mod. Phys. 35, 335 (1963)],
and were found to fit data’ with ¢2=> 20 F~2 as well as
the more commonly used form made up of resonance
terms. Results of earlier experiments are also shown.

726 Cool, Maschke, Lederman, Tannenbaum, Ellsworth, Melissinos, Tinlot, Yamanouchi PRL14(1965)724
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FIG. 3. (Color online) N.; per nucleon and quark participant
pair vs centrality. The results for quark participant pair are shown

n
for o,,=4.56 mb (solid symbols) and o,,=6 mb (open symbols). b <Npart>

Eremin& Voloshin, PRC 67 (2003) 064905 Nouicer, EPJC 49 (2007) 281

These analyses didn’t do entire distributions but only centrality-cut averages.
Also they just generated 3 times the number of nucleons in a nucleus according
to the Au nuclear density and called them constituent quarks then let them
interact with the conventional g+q cross section 0, =0y, n/9. The p+p result

used constant radial density in a proton taken as a hard sphere with r<0.8fm.
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*This statement 1s correct so several of us got together to figure out
how to generate 3 quarks about a nucleon that would preserve the
c.m. position and the charge distribution about this ¢.m and how this
would affect our results from PHENIX2014.

* We found 3 new methods that preserve both the original proton c.m.
with the correct charge distributions about the c.m. “Planar Polygon™,
“Explicit Joint”, “Empirical Recentered” I discuss 2. See Mitchell,
Perepelitsa, Tannenbaum and Stankus PRC93,054910 (2016)
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Generate one quark at (r,0,0) with r drawn from A2 e{-4.27r}.

Then instead of generating cos 0 and @ at random and repeating

for the two other quarks as was done by PHENIX2014, imagine that
this quark lies on a ring of radius r from the origin and place the two
other quarks on the ring at angles spaced by 27/3 radians. Then
randomize the orientation of the 3-quark ring spherically symmetric
about the origin. This guarantees that the radial density distribution 1s
correct about the origin and the center of mass of the three quarks is at
the origin but leaves three quark triplet on each trial forming an
equilateral triangle on the plane of the ring. ot . :

.....

P=5" Office of _ e
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100 | I I I I I I I | I I I I | I I I I | I I I |
® Au+Au 200 GeV

NQP calc PHENIX2014 eyop=0.659
NQP calc PlanarP €ngp=0.707

& 1072 NQP calc Explicit] eygp=0.708
=)
3 1074
=
10~6
0 200 400 600 800 1000
Ey (GeV)

surprisingly the most complicated Explicit J and simplest Planar P
are virtually identical. EmpiricalR is ~within 1 o of PX2014
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PHENIX and E802 E; Transverse Energy corr to An=1 A¢=2n

10_ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I I I I
OE802%8.1 | E302- PLB 332,258 (1994)
107
e PHENIX PRC 89 044905 (2014)

T
% 1073
S
=)
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But following the style of the CERN fixed target results at c. 2000, we stopped plotting
distributions [PRL87,052301(2001)] and gave results as (dE/dn)/(0.5Npart) vs. Npart
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® Exactly the same shape vs. N, although <N_,> is a factor of 1.6
larger and the hard-scattering cross section is considerably larger.

v' PHENIX (2001) dN_/dn~ N, with 0=1.16+0.04 at Vs =130 GeV
v' ALICE (2013) dNg/dn~N__ @ with 0=1.19+0.02 at Vs=2760 GeV

e Strongly argues against a hard-scattering component and for a

Nuclear Geometrical Effect.
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Glauber MC with quark scaling [10]

Single quark position determined with proton density:

roton - —— . —— .

[P (7‘) — Pg eXP(—a ' T‘)J £ T <05 | | |

5 | ALICE, Pb-Pb, \sy, = 5.02 TeV d

particle multiplicity[9] 3 "N o

density scales linearly[ =[5 | | o sy —

with the number of = | . :
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constituent quark 5 . |

participants [8] 21 4 g ]

o _E |9 A
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[8] ALICE Collaboration, V. Zaccolo, 1S2016 300 400

[9] ALICE Collaboration, PRL 116 (2016) 222302 (Npart)
[10] C. Loizides, PRC 94 (2016) 024914-Uses Empirical Recentered Formula
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This and many other relevant High Energy Physics issues in RHI physics are available in the
new book by Jan Rak and Michael J. Tannenbaum, “High p; physics in the Heavy Ion Era”

High-pT Physics in the Heavy Ion Era
Jan Rak, University of Jyvaskyla, Finland
Michael J. Tannenbaum, Brookhaven National Laboratory, New York

Hardback

Series: Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology(No. 34)
ISBN:9780521190299

396pages

202 b/w illus.

Dimensions: 247 x 174 mm
Weight: 0.87kg

Availablity: In Stock

$115.00 (C)

View larger image

View other formats: Adobe eBook Reader

Aimed at graduate students and researchers in the field of high-energy nuclear physics, this book provides an overview of
the basic concepts of large transverse momentum particle physics, with a focus on pQCD phenomena. It examines high-
pT probes of relativistic heavy-ion collisions and will serve as a handbook for those working on RHIC and LHC data
analyses. Starting with an introduction and review of the field, the authors look at basic observables and experimental
techniques, concentrating on relativistic particle kinematics, before moving onto a discussion about the origins of high-pT
physics. The main features of high-pT physics are placed within a historical context and the authors adopt an
experimental outlook, highlighting the most important discoveries leading up to the foundation of modern QCD theory.
Advanced methods are described in detail, making this book especially useful for newcomers to the field.

http://www.cambridge.org/knowledge/discountpromotion?code=E3RAK 20% discount
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BNL-Barnes, Samios et al., PRL12, 204 (1964)

For more on Constituent quarks in QCD see

E. V. Shuryak, Nucl. Phys. B 203, 116 (1982).
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